Dialysis delivery of an adenosine A2A agonist into the pontine reticular formation of C57BL/6J mouse increases pontine acetylcholine release and sleep.
نویسندگان
چکیده
In vivo microdialysis in C57BL/6J (B6) mouse was used to test the hypothesis that activating adenosine A(2A) receptors in the pontine reticular formation (PRF) increases acetylcholine (ACh) release and rapid eye movement (REM) sleep. Eight concentrations of the adenosine A(2A) receptor agonist 2-p-(2-carboxyethyl)phenethylamino-5'-N-ethylcarboxamidoadenosine hydrochloride (CGS 21680; CGS) were delivered to the PRF and ACh in the PRF was quantified. ACh release was significantly increased by dialysis with 3 mum CGS and significantly decreased by dialysis with 10 and 100 microm CGS. Co-administration of the adenosine A(2A) receptor antagonist 4-(2-[7-amino-2-(2-furyl)[1,2,4]triazolo[2,3-a][1,3,5]triazin-5-ylamino]ethyl)phenol (ZM 241385; 30 nM) blocked the CGS-induced increase in ACh release. In a second series of experiments, CGS (3 microm) was delivered by dialysis to the PRF for 2 h while recording sleep and wakefulness. CGS significantly decreased time in wakefulness (-51% in h 1; -54% in h 2), increased time in non-rapid eye movement (NREM) sleep (90% in h 1; 151% in h 2), and increased both time in REM sleep (331% in h 2) and the number of REM sleep episodes (488% in h 2). The enhancement of REM sleep is consistent with the interpretation that adenosine A(2A) receptors in the PRF of the B6 mouse contribute to REM sleep regulation, in part, by increasing ACh release in the PRF. A(2A) receptor activation may promote NREM sleep via GABAergic inhibition of arousal promoting neurons in the PRF.
منابع مشابه
Jap-00962-2005.r1 Nitric Oxide in B6 Mouse and Nitric Oxide-sensitive Soluble Guanylate Cyclase in Cat Modulate Acetylcholine Release in Pontine Reticular Formation
Acetylcholine (ACh) regulates arousal and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mouse caused a significant (p<0.0001) increase in ACh release. Microdialysis delivery of the nitric oxide donor NOC...
متن کاملNitric oxide in B6 mouse and nitric oxide-sensitive soluble guanylate cyclase in cat modulate acetylcholine release in pontine reticular formation.
ACh regulates arousal, and the present study was designed to provide insight into the neurochemical mechanisms modulating ACh release in the pontine reticular formation. Nitric oxide (NO)-releasing beads microinjected into the pontine reticular formation of C57BL/6J (B6) mice significantly (P < 0.0001) increased ACh release. Microdialysis delivery of the NO donor N-ethyl-2-(1-ethyl-2-hydroxy-2-...
متن کاملGABA(A) receptors in the pontine reticular formation of C57BL/6J mouse modulate neurochemical, electrographic, and behavioral phenotypes of wakefulness.
Drugs that potentiate transmission at GABA(A) receptors are widely used to enhance sleep and to cause general anesthesia. The mechanisms underlying these effects are unknown. This study tested the hypothesis that GABA(A) receptors in the pontine reticular nucleus, oral part (PnO) of mouse modulate five phenotypes of arousal: sleep and wakefulness, cortical electroencephalogram (EEG) activity, a...
متن کاملGABAA receptors inhibit acetylcholine release in cat pontine reticular formation: implications for REM sleep regulation.
This study used in vivo microdialysis in cat (n=12) to test the hypothesis that gamma aminobutyric acid A (GABAA) receptors in the pontine reticular formation (PRF) inhibit acetylcholine (ACh) release. Animals were anesthetized with halothane to hold arousal state constant. Six concentrations of the GABAA receptor antagonist bicuculline (0.03, 0.1, 0.3, 1, 3, and 10 mM) were delivered to a dial...
متن کاملAdenosine A(1) receptors in mouse pontine reticular formation depress breathing, increase anesthesia recovery time, and decrease acetylcholine release.
BACKGROUND Clinical and preclinical data demonstrate the analgesic actions of adenosine. Central administration of adenosine agonists, however, suppresses arousal and breathing by poorly understood mechanisms. This study tested the two-tailed hypothesis that adenosine A1 receptors in the pontine reticular formation (PRF) of C57BL/6J mice modulate breathing, behavioral arousal, and PRF acetylcho...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurochemistry
دوره 96 6 شماره
صفحات -
تاریخ انتشار 2006